Course Curriculum

Learning Path

    1. Welcome Students to the 8 week Self Paced course on Datascience

    2. What is Included in your Course

    3. Know your Mentor - Dr Manish Jain

    1. Session 1 - Introduction Session

    2. Session 2 with Dr Manish

    3. 1. Introduction to Python - Python Versions and Installing

    4. Environment Variables

    5. Executing Python from the command line

    6. IDLE

    7. Editing Python files

    8. Python Documentation Getting Help

    9. Dynamic Types

    10. Python Reserved words

    11. Naming Conventions

    12. 2. Basic Python Syntax - Comments

    13. Comments - presentation

    14. String Values

    15. String Values - presentation

    16. String methods

    17. String methods - presentation

    18. String Operators and the format method

    19. String Operators - presentation

    20. Numeric Data types

    21. Numeric Data types - presentation

    22. Conversion Functions

    23. Simple Input and Output

    24. The Print Function

    25. 3. Language Components Indenting requirements - The If statement

    26. Relational Operators

    27. Relational Operators - presentation

    28. Logical Operators

    29. Logical Operators - presentation

    30. Bitwise Operators

    31. Bitwise Operators - presentation

    32. Looping and Branching

    33. Looping and Branching - presentation

    34. 4. Collection Lists - Lists

    35. Lists - presentation

    36. Tuples, Sets, Dictionaries, Sorting Dictionaries

    37. Tuples, Sets, Dictionaries - presentation

    38. Copying Collections

    39. Exercise - Bit wise operators

    40. Exercise - Looping

    41. Practice Exercises

    1. Session 3 with Dr Manish - Recorded Sessions

    2. 1. Introduction to NumPy - NumPy Standard Data Types

    3. Session 4

    4. Basics of NumPy Arrays

    5. NumPy Array Attributes

    6. Array Indexing : accessing single elements

    7. Array Slicing : accessing sub arrays

    8. Reshaping of Arrays

    9. Array Concatenation and Splitting

    10. Computation on NumPy arrays : universal functions

    11. Practice Exercises

    12. Numpy Tutorial

    13. Session 5

    14. 2. Data Manipulation with Pandas - Installing and using Pandas

    15. Data Selection in Dataframe

    16. Reading Data using Pandas

    17. Missing Values in Dataframes

    18. Dataframe Methods

    19. Graphics to Explore the Data

    20. Dataframe Attributes

    21. Basic Descriptive Statistics

    22. Aggregation functions in Pandas

    23. Pandas

    24. Pandas new

    25. Practice Exercises

    26. Session 6

    27. 3. Visualization with Matplotlib - Bar plot

    28. Histogram

    29. Pie chart

    30. Scatter plot

    31. Contour plot (Level plot)

    32. Box plot

    33. Session 7

    34. Violin plot

    35. Heat map

    36. Session 8

    37. Data Visualization with Seaboarn

    38. Plot and Chart

    39. Practice Exercises

    1. Session 9

    2. 1. Linear Regression - Simple Linear Regression

    3. Polynomial Linear Regression

    4. Cost Function of Linear Regression

    5. Understanding Linear Regression using Matrix

    6. 2. Logistic Regression - Cost Function and Mathematical Foundation

    7. Session 10

    8. Implementing Logistic Regression

    9. Logistic Regression : Use - cases

    10. 3. Machine Learning

    11. Session 11

    12. 4. Naive Bayes classification - Bayes Theorem and Mathematical Foundation

    13. Types of Naive Bayes

    14. When to use Naive Bayes

    15. Naive Bayes Classification

    16. Use cases of Naive Bayes

    17. Session 12

    18. 4. Decision Trees and Random Forests - Understanding Decision Trees

    19. Session 13

    20. Random Forest Regression

    21. Ensembles of Estimators : Random Forests

    22. Application of Random Forest

    23. Practice Exercise

    1. Session 14

    2. 1. Building Recommender System - Recommendation Systems

    3. Need of Recommendation Systems

    4. Use case of Recommendation Systems

    5. Types of Recommendations Systems

    6. Data Acquisition

    7. User-Based Collaborative Filtering

    8. Collaborative Filtering Algorithm

    9. 2. Genetic Algorithms - Introduction to Neural Networks

    10. Applications of Neural Networks

    11. Artificial Neural Networks

    12. Implementation steps in Neural Networks

    13. Activation Functions

    14. 3. Natural Language Processing - Text Mining

    15. Tokenization

    16. Stemming

    17. Lemmatization

    18. Session 15

    19. Session 16

    20. Chunking

    21. Session 17

    1. Session 18

    2. 1. K-Nearest Neighbors - Introduction to KNN

    3. KNN Feature Weights

    4. Feature Normalization

    5. Session 19

    6. KNN Classification

    7. Session 20

    8. 2. Support Vector Machines - Optimization Problem

    9. Hyperplane

    10. Session 21

    11. 3. Neural Networks in Projects - Syntax for Neural Networks

    12. Session 22

About this course

  • $210.00
  • 174 lessons
  • 0 hours of video content

Our Instructor

Senior Mentor for the Course

Senior Mentor Dr Manish Jain

Industry 4.0 | Blockchain | IOT | ML | Data Science | BigData | AI | Cloud Computing | Hadoop| Deep Learning | Data Science Trainer
Watch Intro Video

Testimonials

Watch what our students have said about this course